## How to best use these slides...

View the PPT as a slide show



- Then click through every step
  - Mouse clicks will advance the slide show
  - Left/right arrow keys move forward/backward
  - Mouse wheel scrolling moves forward/backward
- When a question is posed, stop and think it through, try to answer it yourself before clicking
- If you have questions, use PS discussion boards, email me, and/or visit us in a Teams class session!

# LESSON 7.2c

**Graphing Other Rational Functions** 

#### Today you will:

- Graph rational functions in the form  $y = \frac{ax+b}{cx+d}$ .
- Practice using English to describe math processes and equations

### **Core Vocabulary:**

• Rational function, p. 366

### Previous:

- Domain
- Range
- Hyperbola
- Asymptote

#### Let's look at more complicated rational functions ... another common form for rational functions is

$$y = \frac{ax+b}{cx+d}$$

Important note: the equations in the numerator and in the denominator are of the same degree!

First question: what is the domain of a function in this form?

- Asked a different way, are there any limitations or illegal x values?
- Hint: is there a limitation that every fraction has?
- Answer: Yes! You cannot divide by zero.
- That means  $cx + d \neq 0$  so if  $x = -\frac{d}{c}$  we have problems!
- So now we know the domain: all real numbers except  $x = -\frac{d}{c}$
- vertical asymptote is  $x = -\frac{d}{c}$

Let's look at more complicated rational functions ... another common form for rational functions is

$$y = \frac{ax+b}{cx+d}$$

Vertical Asymptote:  $x = -\frac{d}{c}$ 

#### Second question:

- What is the range?
- Best way to answer this question is to look at what happens to y as x gets \*REALLY\* big

• For example, let's make up a function 
$$\left(y = \frac{5x-1}{2x+3}\right)$$
 and try  $x = 1,000,000$ .

(note that a = 5, b = 2)  $y = \frac{5x - 1}{2x + 3} = \frac{5,000,000 - 1}{2,000,000 + 3} = \frac{4,999,999}{2,000,003} \approx \frac{5}{2} = \frac{a}{c}$ 

- So as x gets really big (as  $x \to \infty$ ) then y will approach  $\frac{a}{c}$
- This gives us the *horizontal asymptote*  $y = \frac{a}{c}$

Let's look at more complicated rational functions ... another common form for rational functions is

$$y = \frac{ax+b}{cx+d}$$

Vertical Asymptote:  $x = -\frac{d}{c}$ 

Horizontal Asymptote:  $y = \frac{a}{c}$ 

## Update – how to graph rational functions

1. Draw the asymptotes

| Function Form                            | Horizontal Asymptote | Vertical Asymptote |
|------------------------------------------|----------------------|--------------------|
| Translated form: $y = \frac{a}{x-h} + k$ | y = k                | x = h              |
| In $y = \frac{ax+b}{cx+d}$ form          | $y = \frac{a}{c}$    | $x = -\frac{d}{c}$ |
| In simple form: $y = \frac{a}{x}$        | <i>x</i> -axis       | y-axis             |

- 2. Plot points to the left and to the right of the vertical asymptote
  - Pick numbers for x that are easy to calculate and to plot
  - If *a* is negative, the graph will be reflected around the *x* axis
- 3. Connect the dots
  - Draw the branches so they approach but do not touch the asymptotes

Graph  $f(x) = \frac{2x + 1}{x - 3}$ . State the domain and range. SOLUTION Step 1 Draw the asymptotes. Solve x - 3 = 0 for x to find the vertical

asymptote x = 3. The horizontal asymptote is the line  $y = \frac{a}{c} = \frac{2}{1} = 2$ 



**Step 2** Plot points to the left of the vertical asymptote, such as (2, -5),  $\left(0, -\frac{1}{3}\right)$ , and  $\left(-2, \frac{3}{5}\right)$ . Plot points to the right of the vertical asymptote, such as (4, 9),  $\left(6, \frac{13}{3}\right)$ , and  $\left(8, \frac{17}{5}\right)$ .

**Step 3** Draw the two branches of the hyperbola so that they pass through the plotted points and approach the asymptotes.



The domain is all real numbers except 3 and the range is all real numbers except 2.

## **Review/Recap**

We now have 3 forms for Rational Functions:

| Function Form                            | Horizontal Asymptote | Vertical Asymptote |
|------------------------------------------|----------------------|--------------------|
| Translated form: $y = \frac{a}{x-h} + k$ | y = k                | x = h              |
| $\ln y = \frac{ax+b}{cx+d} \text{ form}$ | $y = \frac{a}{c}$    | $x = -\frac{d}{c}$ |
| In simple form: $y = \frac{a}{x}$        | <i>x</i> -axis       | <i>y</i> -axis     |

Steps for graphing Rational Functions:

- 1. Draw the asymptotes
- 2. Plot points to the left and to the right of the vertical asymptote
  - Pick numbers for *x* that are easy to calculate and to plot
  - If *a* is negative, the graph will be reflected around the *x*-axis
- 3. Connect the dots
  - Draw the branches so they approach but do not touch the asymptotes

## Homework

Pg 371, #25-32